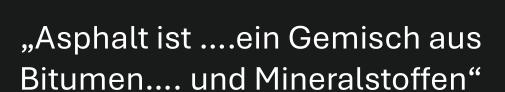


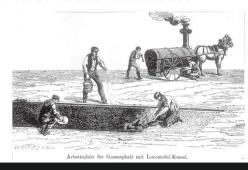
AGENDA

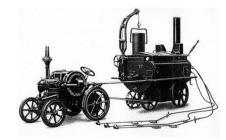

- 1 Theorie
 - Geschichte
 - Zusammensetzung
 - Bitumen
 - Bauweisen
- 2 Praxisteil:
 - **Einbauziele**
 - Oberfläche
 - Fugen
 - Arbeitsschutz

Stand: Februar 2025

EINLEITUNG:

Prof. H. Mallison, Berlin 1933





☐ 1832 Bitumen durch Erdöldestillation

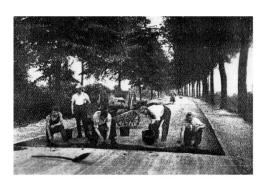
"zeitgenössischer Spott über den "klebrigen" Untergrund, Mitte 19. Jh."

Staubfreimachung – Anspritzen von Teer oder Bitumen

ca. 1835 Erster Gussasphalt
☐ (Frankreich), später Wien,
Paris, London,....

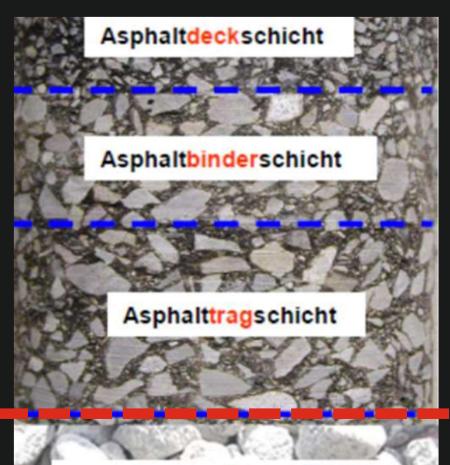
EINFÜHRUNG Geschichte

- > Asphaltstraßenbau
 - Stampfasphalt
 - 1837 in Bordeaux durch De Coulaine
 - 1849 Probestrecke zwischen Travera und Seriere durch E. Merian
 - 1865 waren ca. 100.00 km in Frankreich hergestellt
 - 1869 London
 - 1873 Berlin
 - ➤ Walzasphalt
- 1852 Walzschotterasphalt
- 1868 in Santa Cruz (Überdeckung von altem Holzpflaster)
- 1895 erstmals in Europa (London)
- 1911 Stuttgart
- · ab 1925 in Deutschland Wiederbeginn



☐ 1908 erster Gussasphalt (Rauhhartasphalt) in Berlin als Überzug der Stampfasphaltdecken

7-15 M.- % Bitumen, Kies, Sand, Füller



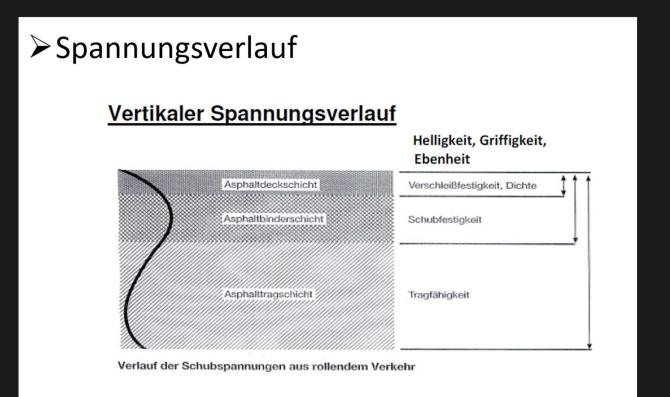
1930 er Splittanteile über 40 M.-% und härtere Bitumensorten

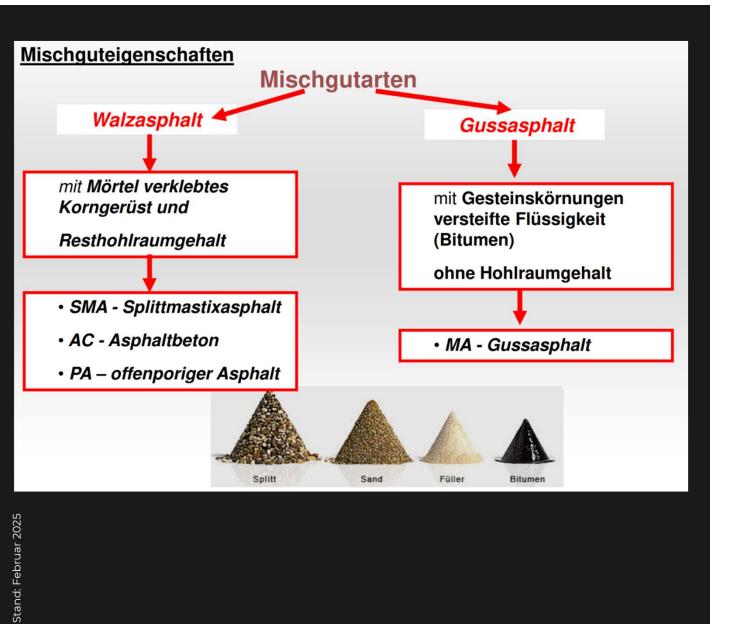


ASHPHALTSCHICHTEN:

Ungebundene Tragschicht

ZTV Asphalt StB 07/13 TL Asphalt StB 07/13



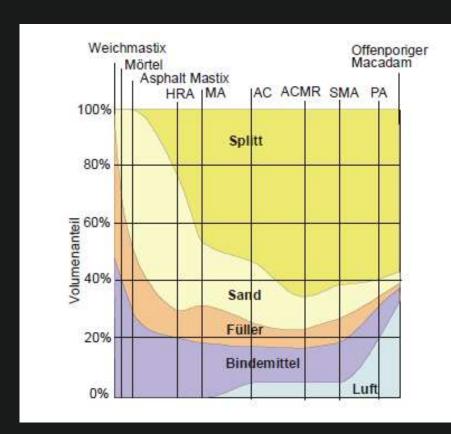


ASHPHALTSCHICHTEN:

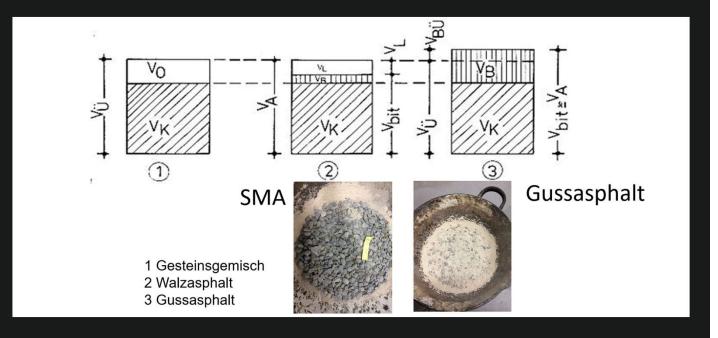
ASPHALTE Zusammensetzung

3 unterschiedliche Asphaltdeckschichten

- Gussasphalt
- > Asphaltbeton
- > Splittmastix

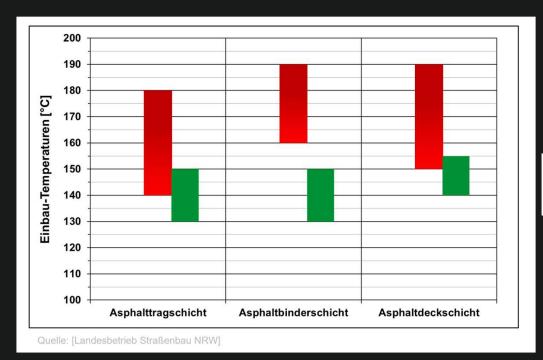


Worin unterscheiden sich die einzelnen Konstruktionen?



Gussasphalt = MA Walzasphalt = AC Splittmastix = SMA Offenporiger Asphalt = PA

ASPHALTE Zusammensetzung



Neues

Neue ZTV Asphalt im Jahr **2025**

ZTV Asphalt-StB 07/13
Neue ZTV Asphalt-StB

ASPHALTE Regelwerk

Neues

Neue ZTV Asphalt im Jahr 2025

Splittreicher Asphaltbeton für Asphaltdeckschichten (z.B. AC 11 D SP)

 Asphaltbeton für Dünne Asphaltdeckschichten in Heißbauweise auf Versiegelung (z.B. AC 5 DSH-V)

 Splittmastixasphalt für lärmtechnisch optimierte Asphaltdeckschichten (z.B. SMA 5 D LA)

Gussasphalt f
ür Asphaltschutzschichten (z.B. MA 16 S)

 Offenporiger Asphalt für Wasserdurchlässige Asphaltschichten (z.B. PA 22 T WDA)

 Asphaltbeton für Asphaltschichten unter Betondecken (z.B. AC 22 TuB)

Reduzierung von Asphaltmischgutarten und –sorten:

"L-Sorten" für AC T entfallen

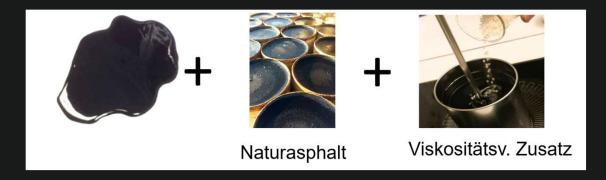
"N-Sorten" für SMA entfallen

Neue ZTV Asphalt im Jahr 2025

Neues

ASPHALTERegelwerk

ZTV-Asphalt-StB 07/13 1.3 Baugrundsätze


Tab. 1

Belastungs-	Asphalt- tragschicht	Asphalt- binder- schicht	Asphalt-	Asphaltdeckschicht aus			
klasse/ Flächenart			tragdeck- schicht	Asphalt- beton	Splitt- mastix- asphalt	Guss- asphalt	Offen- porigem Asphalt
Bk100 und Bk32 Bk10 Bk3,2	AC 32 T S AC 22 T S	AC 22 B S AC 16 B S	-	- AC 11 D S AC 11 D S AC 8 D S	SMA 11 S SMA 8 S	MA 11 S MA 8 S MA 5 S	PA II PA 8
Bk1,8	AC 32 T N AC 22 T N	(AC 16 B N)		AC 11 D N (AC 8 D S)	SMA 8 N (SMA 11 S) (SMA 8 N)	MA 11 N MA 8 N MA 5 N (MA 11 N)	
Bk0,3		-	AC 16 TD*	AC 11 D N	(SMA 8 N) (SMA 5 N)	(MA 8 N) (MA 5 N)	_
Rad- und Gehwege	AC 32 T N AC 22 T L		AC 16 TD	AC 8 D L AC 5 D L	-	(MA 5 N)	

ASPHALTERegelwerk

Belastungs- klasse/ Flächenart	Asphalt- trag- schicht		Asphalt- tragdeck- schicht	Asphaltdeckschicht aus				
				Asphalt- beton	Splittmastix- asphalt	Guss- asphalt	Offen- porigem Asphalt	
Bk100 und Bk32	50/70 (30/45)	25/55-55 30/45 (10/40-65)		-	25/55-55	20/30 30/45 (10/40-65)	40/100-65 –	
Bk10				25/55-55		20/30 30/45 (25/55-55)		
Bk3,2				25/55-55 (50/70)				
Bk1,8	50/70 (70/100)			50/70 (25/55-55)*	50/70 (25/55-55)**	30/45 (25/55-55)		
Bk1,0	70/100 (50/70)	-		50/70 (70/100)	50/70	30/45		
Bk0,3	70/100		70/100	50/70 70/100	70/100			
Rad- und Gehwege				70/100	-			

- ➤ Bezeichnung Asphaltmischgut
 - **≻**Mischgutgruppe
 - ≻max. Körnung
 - **≻**Schichttyp
 - **≻**Mischguttyp

➤ Mischgutgruppe

>AC Asphaltbeton

➤ MA Mastixasphalt (Gussasphalt)

>SMA Splittmastixasphalt

>TD Trag-Deckschicht

➤ PA Offenporiger Asphalt

➤OB Oberflächenbehandlung

>.....

➤ Korngröße

> 5 <= 5mm

≥8 <= 8mm

>11

> 16

> 22

≥ 32 <= 32 mm

> Schicht

>T Tragschicht

➤ B Binderschicht

> D Deckschicht

>L leicht

≻N normal

≻S stark

> Kurzbezeichnungen:

≻Asphalttragschicht

➤ AC 32 T S oder AC 22 T S

➤ AC 32 T N oder AC 22 T N

➤ AC 32 T L oder AC 22 T L

➤ Asphaltbinderschicht

≻AC 22 B S

>AC 16 B S

>AC 16 B N

Kurzbezeichnungen

- >Asphaltdeckschicht aus Asphaltbeton
 - ➤ AC 16 D S
 - >AC 11 D S AC 11 D N AC 11D L
 - >AC8DS AC8DN AC8DL
- ➤ Asphaltdeckschicht aus Splittmastix
 - **>**SMA 11 S
 - ➤SMA 8 S SMA 8 N
 - ➤SMA 5 N

Bitumen und Teer Wo ist der Unterschied?

- ➤ Destillation von Erdöl
 - ➤ Physikalischer Vorgang
 - ➤ Trennung der unveränderten Stoffgruppen auf Grund ihrer unterschiedlichen Siedepunkte

Bitumen

➤ Destillation von Kohle

➤ Chemischer Vorgang

➤ Unter Sauerstoffabschluß wird bei ca. 1.100 °C die Kohle in neue chemische Substanzen zersetzt

➤ Gasförmig: Leuchtgas

➤ Fest: Koks

> Flüssig: Teer

➤ Bestandteile des Bitumens

➤ Kohlenwasserstoffe [80-88%]

➤ Wasserstoff [7-11%]

➤ Schwefel [0,5-7%]

➤ Sauerstoff [1-12%]

➤ Stickstoff [< 1,5%]

Eigenschaften des Bitumens:

- ➤ Thermoplast (Viskosität ist temperaturabhängig)
- hydrophob ("wasserabweisend")
- ➤ Keinen festen Schmelzpunkt, sondern Schmelzbereich
- Chemisch stabil gegen die meisten anorganischen Säuren
- ➤ Teillöslich bei flüssigen Kohlenwasserstoffen
- ➤ Haftet an besten an basischen Gestein (Kalkstein)

Eigenschaften Bitumen:

- ➤ Mögliche Zielerreichung durch
 - ➤ Zugabe von Polymeren
 - ➤ Zugabe von Bitumenadditiven (Wachs)
 - ➤ Zugabe gummimodifiziertes Bitumen (GmB)
 - ➤ Zugabe von Naturasphalt
 - ➤ Zugabe von Haftverbessern (kationische; anionische)
 - ➤ Zugabe von Bindemittelträgern (Faserstoffe)
 - ► Zugabe von anorganischen Zusätzen (Zellolith)
 - ► Zugabe von organischen Zusätzen (Sasobit, Asphalthan)

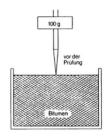
- **≻** Bitumensorten
 - ➤ Destillationsbitumen
 - ➤ Hochvakuumbitumen
 - ➤ Oxidationsbitumen
 - **≻**Polymerbitumen
 - ➤ Verschnittbitumen
 - **→** Bitumenemulsion
 - ➤ Bitumenlösungen

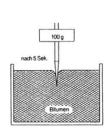
Eigenschaften von Bitumen Prüfungen:

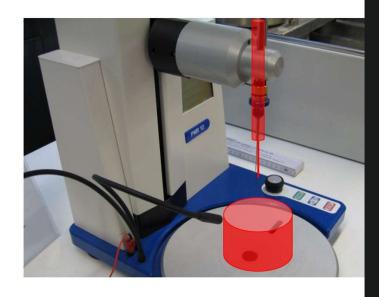
- ➤ Bitumenbindemittelprüfungen
 - ➤ Penetration (DIN EN 1427)
 - ➤ Erweichungspunkt Ring und Kugel (DIN EN 1427)
 - ➤ Brechpunkt nach Fraaß DIN EN 12593)
 - ➤ Elastische Rückstellung (DIN EN 13398)

Eigenschaften von Bitumen Prüfungen:

- ➤ Weitere Untersuchungen sind u.a.:
 - ➤ Bending Beam Rheometer (BBR) Biegebalkenrheometer
 - Festigkeit bei sehr niedrigen Temperaturen
 - Dynamisches Scherrheometer (DSR)
 - ➤ Spurrillen und Ermüdung
 - ➤ Pressure Aging Vessel (PAV)
 - ➤ Alterungsbeständigkeit

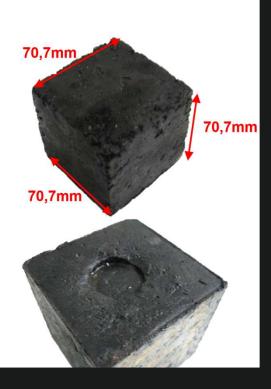



Eigenschaften Bitumen:



2. Herstellung von Gussasphalt

- 2.1 Rohstoffe und Zusammensetzung
- Penetrationsprüfung am Bitumen:
- → Die Eindringtiefe bestimmen
- → Eindringen einer mit 100g belastete Nadel bei 25°C in 5 sek in das Bitumen

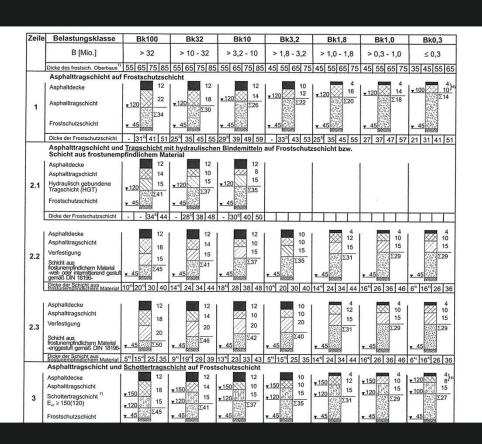


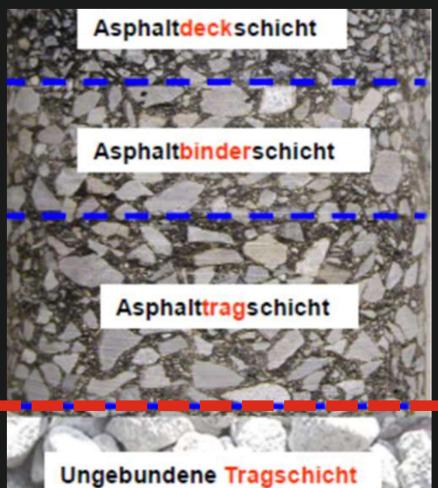
ASPHALTE Bitumenprüfungen

Eigenschaften fertige Schicht:

Statische Eindringtiefe nach TP Asphalt, Teil 20

RSt0 12:


Richtlinien für die Standardisierung des Oberbaues von Verkehrsflächen (RStO 12)



Bauweisen in Asphalt auf F2/F3 (Auszug)

ASHPHALTSCHICHTEN:

ZTV Asphalt StB 07/13 TL Asphalt StB 07/13

ZTV SoB StB TL SoB StB

Abgrenzung in Abhängigkeit vom Baustoff

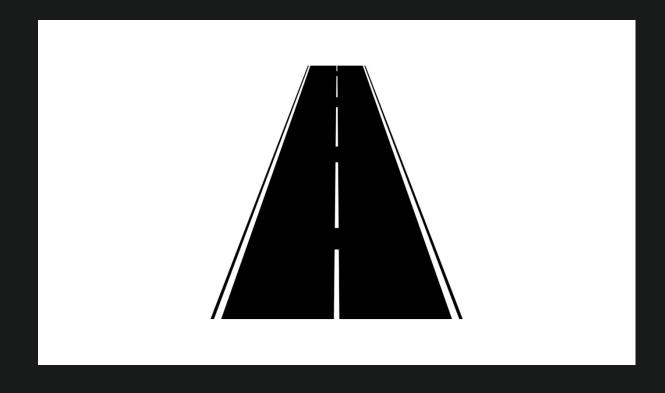
AGENDA

- 1 Theorie
 - Geschichte
 - Zusammensetzung
 - Bitumen
 - Bauweisen
- 2 Praxisteil:
 - **Einbauziele**
 - Oberfläche
 - Fugen
 - Arbeitsschutz

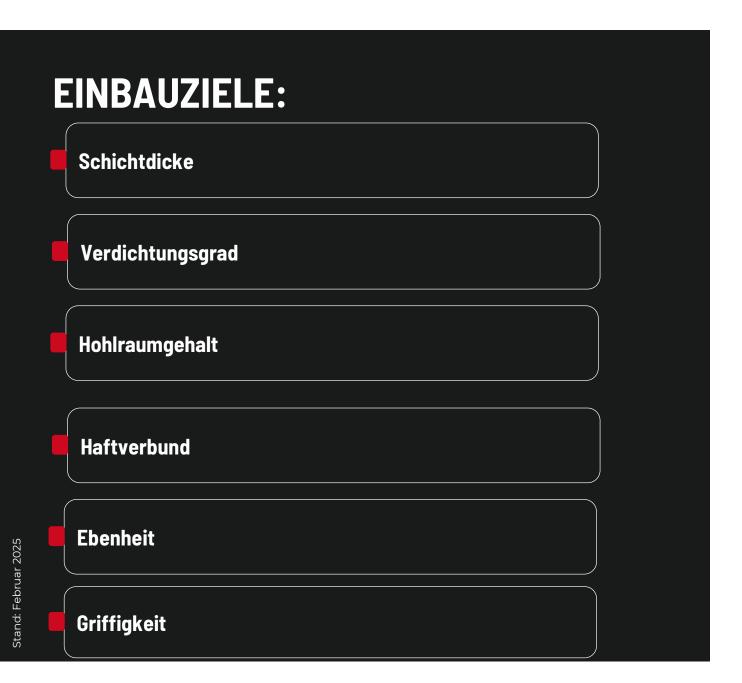
Was steht im Leistungsverzeichnis?

Was steht auf dem Lieferschein?

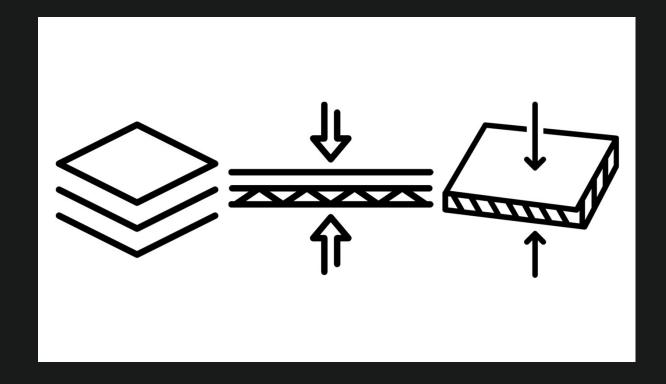








EINBAUZIELEVORGEWERK



EINBAUZIELE ZUSAMMENSTELLUNG

EINBAUZIELE SCHICHTDICKE

MINDESTSCHICHTDICKE:

SCHICHT

18 8 16 AC T

AC 16 B S 5 9

5 AC 16 TD 10

AC 11 D S 5

SMA8S 3,5 4

Stand: Februar 2025


Quelle: ZTV Asphalt 3,5 MA 11 S 4

EINBAUZIELE SCHICHTDICKE

Warum min. und warum max.?

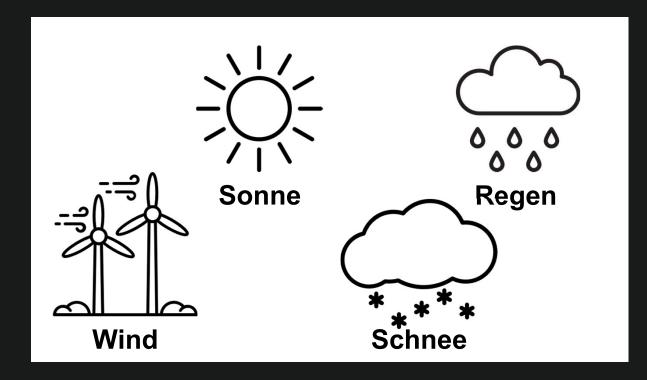


Tabelle 6: Einbaubedingungen

Acabaltashiahtan	Dicke in cm	Mindest-Lufttemperatur			
Asphaltschichten		-3 °C	0 °C	+5 °C	+10 °C*)
Asphalttragschicht		X			
Asphaltbinderschicht			X		
Asphaltdeckschicht aus	≥ 3			X	
Walzasphalt	< 3				X
Asphaltdeckschicht aus	≥ 3		X		
Gussasphalt	< 3				X
Asphaltdeckschicht aus Offenporigem Asphalt					х
Asphalttragdeckschicht			X	I	
Kompakte Asphaltbefestigung			х		

⁷ Temperatur der Unterlage mindestens + 5 °C

Quelle: ZTV Asphalt

Tabelle 5: Niedrigste und höchste Temperatur des Asphaltmischgutes in °C*)

Art und Sorte des Bindemittels im Asphaltmischgut	Asphaltbeton für Asphaltdeckschichten, Asphaltbinder, Asphalttragschicht- mischgut, Asphalttragdeck- schichtmischgut	Splitt- mastix- asphalt	Guss- asphalt	Offen- poriger Asphalt
20/30	-	~	210 bis 230	142
30/45	155 bis 195	-	200 bis 230	-
50/70	140 bis 180	150 bis 190		-
70/100	140 bis 180	140 bis 180	1-	
40/100-65**)	-	14	8	140 bis 170
10/40-65	160 bis 190	-	210 bis 230	· .
25/55-55	150 bis 190	150 bis 190	200 bis 230	100

^{*)} Die unteren Grenzwerte gelten f\u00fcr das Asphaltmischgut bei Anlieferung auf der Baustelle; die oberen Grenzwerte gelten f\u00fcr das Asphaltmischgut bei der Herstellung und beim Verlassen des Asphaltmischers bzw. des Silos.

**) Zusätzlich sind die Angaben des Herstellers zu beachten.

Quelle: ZTV Asphalt

siehe neue ZTV Asphalt

VERDICHTUNGSGRAD (Walzasphalt)

VERDICHTUNGSGRAD:

[%]

AC T

>= 98,0

AC 16 B S

>= 98,0

AC 16 TD

>= 97,0

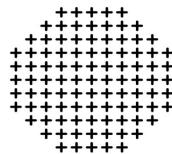
AC 11 D S

>= 98,0

SMA8S

>= 98,0

Quelle: ZTV Asphalt



HOHLRAUMGEHALT:

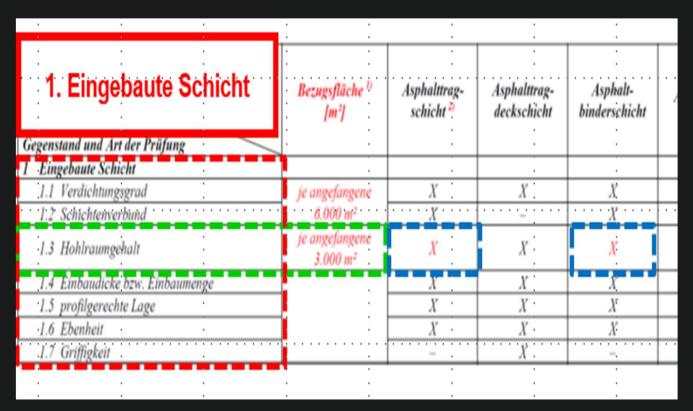
AC 16 TD

<= 6,5

AC 11 D S

<= 5,5

SMA8S


<= 5,0

EINBAUZIELE HOHLRAUMGEHALT

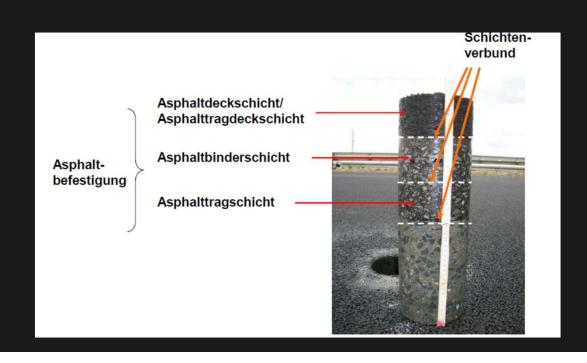
Quelle: ZTV Asphalt

HOHLRAUMGEHALT:

Quelle: ZTV Asphalt

Neue ZTV Asphalt im Jahr 2025

HAFTVERBUND



Schichtenverbund

Warum ist ein Schichtenverbund wichtig?

- alle drei Schichten miteinander verklebt (Theorie): 100 %
- nur Tragschicht mit Binder: 60%
- nur Decke mit Binder: 30 %
- alle ohne Verklebung (Theorie): 15%

Quelle: Straße und Autobahn 8/2018

HAFTVERBUND:

Haftverbundanforderungen

Schichtenverbund nach Leutner

anwendbar ab 2 cm Schichtdicke

Deckschicht / Binder >= 15 KN

▶ Binder / Tragschicht >= 12 KN

MENGE BITUMENEMULSION

Tabelle 7: Art und Dosierung der polymermodifizierten Bitumenemulsion in Abhängigkeit von der Unterlage in den Belastungsklassen Bk100 bis Bk3,2

Art und Beschaffen- heit der Unterlage		Aufzubringende Schicht			
		au		Asphaltdeckschicht aus Splittmastixasphalt oder Asphaltbeton	
		Ansprühmenge C60BP1-S in g/m²			
Asphalt- tragschicht	f	150 bis 250	250 bis 350	X	
	gf	250 bis 350	250 bis 350	X	
	o/a	300 bis 400	300 bis 500	X	
Asphalt- binderschicht	f	-	X	150 bis 250	
	gf	-	250 bis 350	250 bis 350	
	o/a	-	300 bis 500	250 bis 350	

Erläuterungen: f = frisch

gf = gefräst

o/a = sehr offenporig oder ausgemagert bzw. Kornausbruch

x = sind objektbezogen zu betrachten

= sollte nicht vorkommen

Quelle: ZTV Asphalt

Tabelle 8: Art und Dosierung der lösemittelhaltigen Bitumenemulsion in Abhängigkeit der Unterlage in den Belastungsklassen Bk1,8 bis Bk0,3

Art und Beschaffenheit der Unterlage		Aufzubringende Schicht		
		Asphalttragschicht	Asphaltdeckschicht aus Splittmastixasphalt oder Asphaltbeton	
		Ansprühmenge C40BF1-S in g/m²		
	f	200 bis 300	200 bis 300	
Asphalttragschicht	gf	300 bis 400	200 bis 300	
	o/a	350 bis 450	300 bis 400	

Erläuterungen: f = frischgf = gefräst

o/a = sehr offenporig oder ausgemagert bzw. Kornausbruch

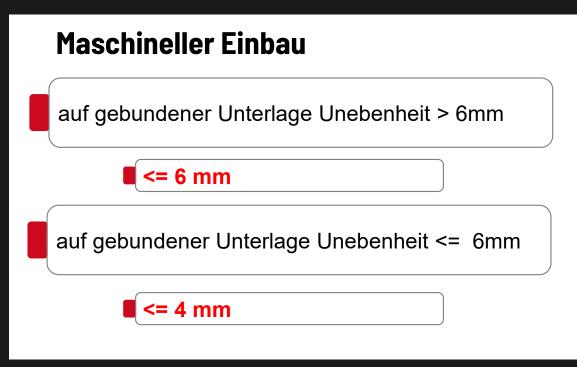
Die für die Ausführung erforderliche Ansprühmenge ist vor Ort festzulegen. Diese Menge ist der Abrechnung zugrunde zu legen.

Quelle: ZTV Asphalt

EINBAUZIELEHAFTVERBUND

bei feuchter Unterlage:

Gefahren:

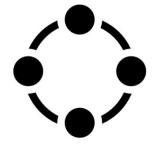

- Fehlender Schichtenverbund
- Blasenbildung

Stand: Februar 2025

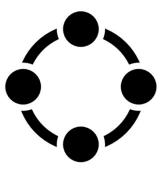
Ebenheit unter der 4m Latte

Ebenheit unter der 4m Latte

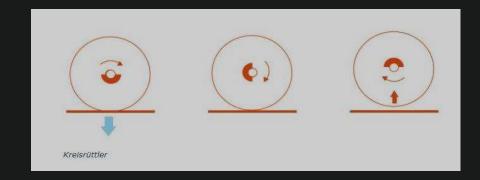
händischer Einbau auf gebundener Unterlage <= 10 mm auf gebundener Unterlage Unebenheit <= 6mm <= 4 mm

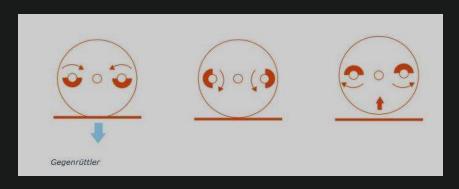


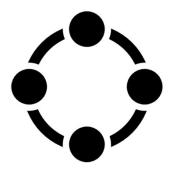
VERDICHTUNGSTECHNIK


WIEDERHOLUNG VERDICHTUNGS-TECHNIK

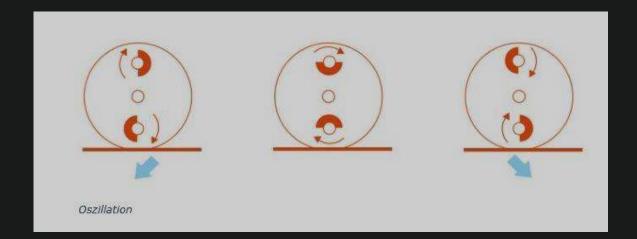
Verdichtungsart

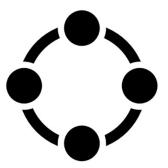

statische


dynamische



Vibration (vertikale Bewegung)



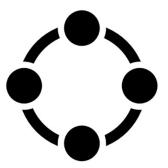


Oszillation (Drehmoment)

Walzeneinflussfaktoren

Statische Linenlast

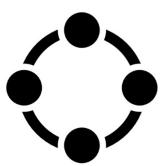
Amplitude


Frequenz

Schwingende u. abgefederte Masse

Walzenübergänge

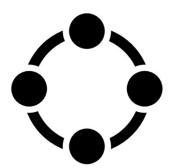
Walzengeschwindigkeit


Amplitude

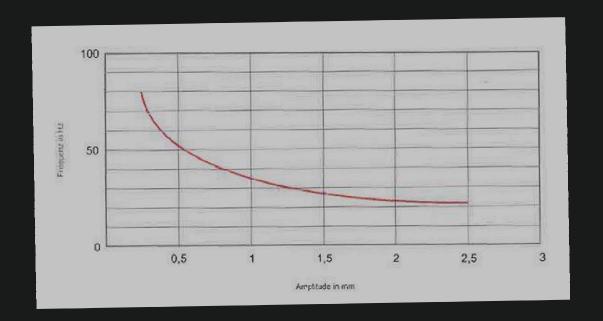
Maß, um welches sich die schwingende Bandage beim Verdichten aus ihrer Ausgangsposition bewegt

kleine Amplitude = geringe Schlagkraft = geringe Tiefenwirkung

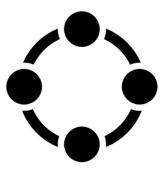
große Amplitude = hohe Schlagkraft = große



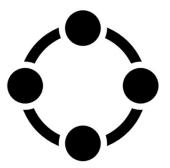
Frequenz


Anzahl der Umdrehung der Unwuchtmasse der Bandage pro Sekunde

sollte in Abhängigkeit zur Amplitude gesehen werden


Kleine Amplitude – Große Frequenz Große Amplitude – Kleine Frequenz

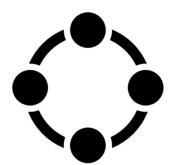
Frequenz / Amplitude



Walzentechnik

- 1. Temperatur Mischgut
- 2. Art der Verdichtung
- 3. Geschwindigkeit der Walzen
 - 4. Gewicht der Walzen
 - 5. Antriebsachse zum Fertiger
 - 6. Berieselung Bandage

Walzentechnik


7. Beginn im Querprofil

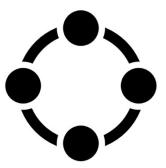
8. Anzahl der Übergänge

9. Überlappung

10. Wendepunkte

11. Sonderbelänge

Walzentechnik


1. Temperatur Mischgut

zu heiß: Material reißt

zu kalt: Gefahr der

Kornzertrümmerung

Stand: Februar 2025

VERDICHTUNGSTECHNIK:

Walzentechnik

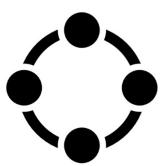
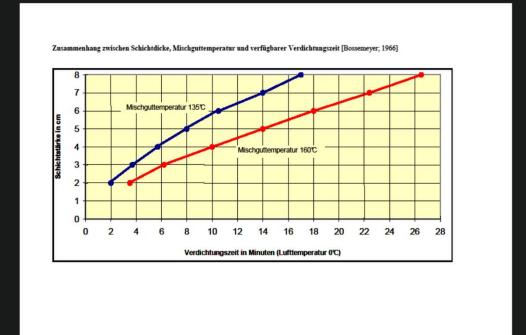
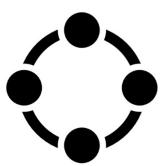

1. Temperatur Mischgut

Tabelle 5: Niedrigste und höchste Temperatur des Asphaltmischgutes in °C")

Art und Sorte des Bindemittels im Asphaltmischgut	Asphaltbeton für Asphaltdeckschichten, Asphaltbinder, Asphalttragschicht- mischgut, Asphalttragdeck- schichtmischgut	Splitt- mastix- asphalt	Guss- asphalt	Offen- poriger Asphalt
20/30	-	~	210 bis 230	9
30/45	155 bis 195	-	200 bis 230	*
50/70	140 bis 180	150 bis 190		= =
70/100	140 bis 180	140 bis 180	1-	, 22
40/100-65**)	-			140 bis 170
10/40-65	160 bis 190	-	210 bis 230	100
25/55-55	150 bis 190	150 bis 190	200 bis 230	100

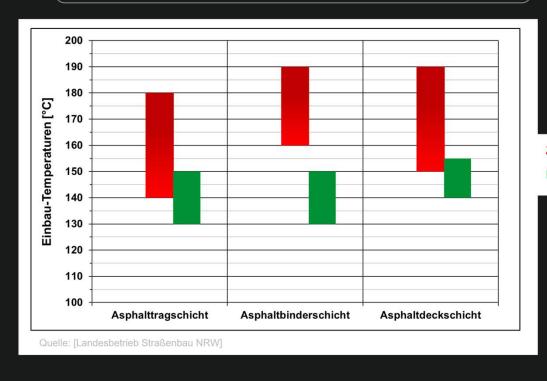
^{*)} Die unteren Grenzwerte gelten für das Asphaltmischgut bei Anlieferung auf der Baustelle; die oberen Grenzwerte gelten für das Asphaltmischgut bei der Herstellung und beim Verlassen des Asphaltmischers bzw. des Silos.

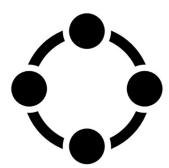



^{**)} Zusätzlich sind die Angaben des Herstellers zu beachten.

Walzentechnik

1. Temperatur Mischgut





Walzentechnik

1. Temperatur Mischgut

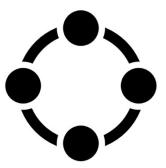
ZTV Asphalt-StB 07/13
Neue ZTV Asphalt-StB

Walzentechnik

2. Art der Verdichtung

statisch:

- immer erster Walzengang
- letzte Überfahrten


dynamisch:

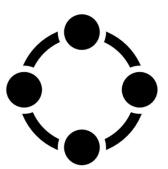
Hauptverdichtung

Händisch:

reversierbarer Verdichter

Walzentechnik

3. Geschwindigkeit der Walzen

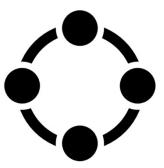

➤ zu schnell - zu starke Abbremskräfte beim

Fahrtrichtungswechsel

- Bugwellengefahr

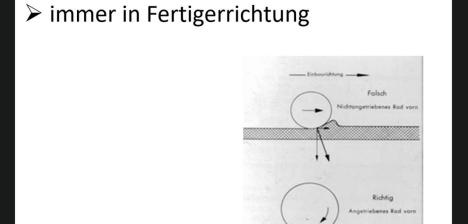
➤ zu langsam - Abstand Walzen-Fertiger wird zu groß

(Temperaturverlust)

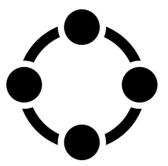


Walzentechnik

4. Gewicht der Walzen

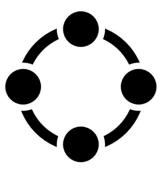

➤ zu schwer - Mischgut schiebt

➤ zu leicht - zu geringe Verdichtung



Walzentechnik

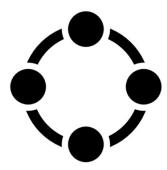
5. Antriebsachse zum Fertiger



Walzentechnik

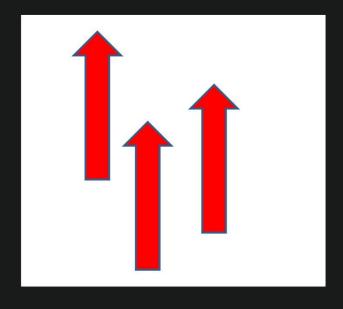
7. Beginn im Querprofil

von unten nach oben Mischgut schiebt,

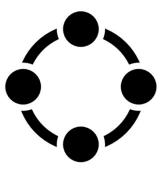

THE STIME

Walzentechnik

8. Anzahl der Übergänge

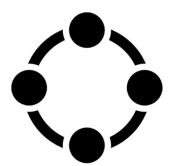

➤ zu wenige - zu geringe Verdichtung

➤ zu viele - wieder Auflockerung



Walzentechnik

10. Wendepunkte



Walzentechnik

11. Sonderbelänge

Dünnschichtbeläge, offenporige Beläge

nur statisch

ZIELE:

Walz: Anfangsgriffigkeit

Gussasphalt: ständige Griffigkeit

3 Verfahren für den Gussasphalt

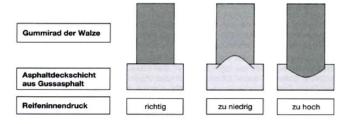
Verfahren A

Verfahren B

Verfahren C

WE STIME

Verfahren für den Walzasphalt


Abstreuung von 2,5 kg/m2 Splitt

3.9.5 Bearbeitung der Oberfläche

VERFAHREN A (gewalzte Oberfläche)

- Gesteinskörnung 2/5, leicht mit Bindemittel umhüllt
- 12 15 kg/m², maschinell
- Andrücken mit Gummirad/Glattmantelwalze

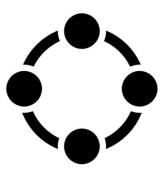
VERFAHREN C (Randstreifen, Rinnen)

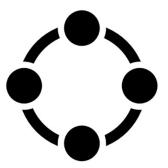
- Gesteinskörnung 0/2, aufstreuen und einreiben

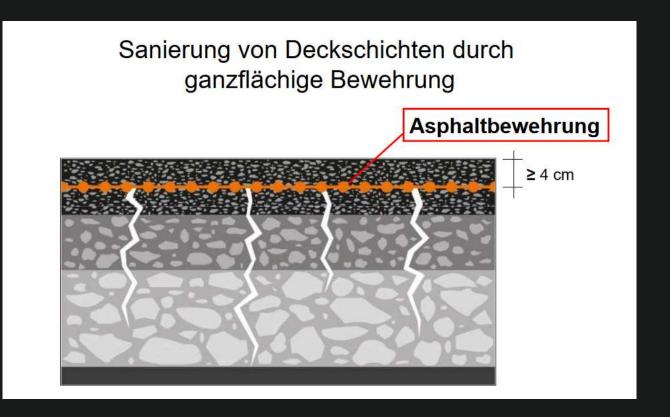
VERFAHREN B (lärmtechnisch verbesserter Gussasphalt)

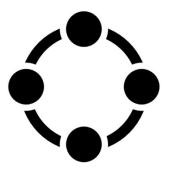
D_{StrO} - Wert RLS: -2 dB(A)

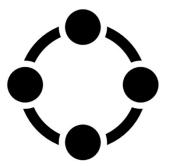
- ☐ Mischgutsorten: MA 8 S, MA 5 S
- □ 10 bis 13 kg/m² gleichmäßig mit Bindemittel (ca. 1 M.-%) umhüllte enggestufte grobe Gk 2/3 oder 2/4 (Unterkorn max. 5 M., kubisch geformt) aufbringen
- □ Transport des Materials in thermoisolierten Fahrzeugen heiß (ca. 150 °C) auf die Oberfläche des Gussasphaltes









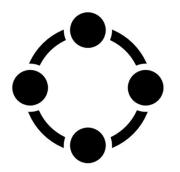


Ziele:

Verlängerung der Nutzungsdauer

Anforderung:

- sachgerechter Einbau
- Erzielung Haftverbund


tand: Februar 2025

ASPHALTEINLAGEN:

Zu beachtende Punkte:

- > erhöhte Anforderungen an das Fräsen
- rhöhte Anforderungen an die Bitumenemulsion
- > Sattel fahren auf der Asphalteinlage
- > Asphaltfertiger fährt auf der Asphalteinlage
- > Verringerung Haftverbund
- Wiederverwertung des Asphaltes
- Regelwerk ist noch nicht passend

FUGEN / NÄHTE

Das Gleiche?

FUGEN UND NÄHTE:

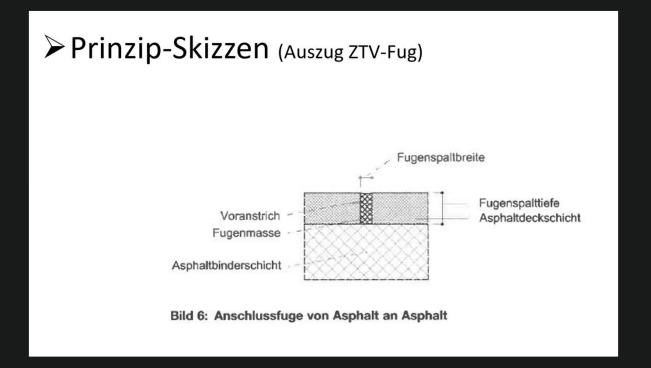
Begriffserklärung:

Eine Fuge ist der **Zwischenraum** von zwei Flächen.

Eine Naht ist die **Verklebungsfläche** von zwei Flächen.

FUGEN UND NÄHTE:

➤ ZTV Fug-StB 15


FUGEN:

STATE STATE

- > Fugentypen
 - ➤ Preßfuge
 - **≻**Raumfuge
 - ➤ Scheinfuge
 - **≻**Gleitfuge

GEOMETRIE EINER ASPHALTFUGE:

Breite: 10 – 12 mm

Tiefe: <= 2,5 cm

vertieft!!!

Warum werden Fugen vertieft vergossen?

TRANSPORT VON ASPHALTMISCHGUT

TRANSPORT VON WALZASPHALT:

Walzasphalt

im Thermo Sattel

im Thermoncontainer

TRANSPORT VON GUSSASPHALT:

im Gussasphaltkocher

im Temperaturanzeige

im Druckanzeige

mit Dokumentation

Mindestrührzeit im GA-Kocher: 45 min.

ARBEITSPLATZGRENZWERT:

November 2019

Arbeitsplatzgrenzwert von 1,5 mg/ m³

für Dampf und Aerosol bei der Heißverarbeitung von Bitumen

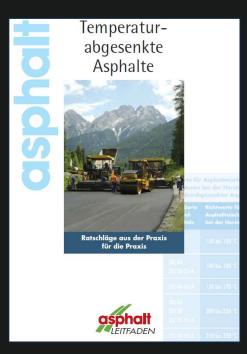
Ausschuss für Gefahrstoffe

ARBEITSPLATZGRENZWERT:

der Technischen Regel für Gefahrstoffe (TRGS) 900

Bemerkungen:

- (33) Bezogen auf den Bitumenkondensat-Standard (Messverfahren 6305-2 der IFA-Arbeitsmappe)
- (34) Galt **nicht** für den Bereich Guss- und Walzasphalt sowie im Bereich der Bitumen- und Polymerbitumenbahnen bis 31. **Dezember 2024**



TEMPERATURABSENKUNG:

STATE STATE

Die Vorteile temperaturabgesenkter Asphalte auf einen Blick:

- Arbeitsschutz
- Umweltschutz
- Belastbarkeit ? wirklich
- Bauzeitverkürzung ? wirklich
- Einbauhilfe ? wirklich

Für den Walzasphalt wurde die Übergangsphase um 2 weitere Jahre verlängert:

Möglicher Lösungsansatz

Für den Gussasphalt gelten seit dem 01.01.2025 die neuen Grenzwerte:

Lösungsänsätze

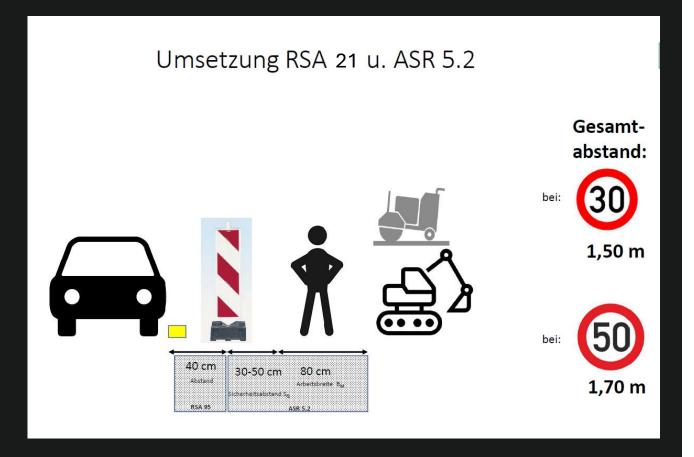
Subsitution

Technische Maßnahmen

Organisatorische Maßnahmen

Persönliche Schutzmaßnahmen

ARBEITSSICHERHEIT:



ARBEITSSICHERHEIT:

1. ETAPPE:

Gussasphalt-Weiterbildung

UNTERLAGEN ZUM NACHLESEN

Den Link zum Download der Unterlagen erhalten Sie in der kommenden Woche.

